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Precision agriculture is revolutionizing the management of mango orchards by integrating advanced
technologies to optimize yield, enhance resource efficiency, and minimize environmental impact. This approach
leverages various components such as Global Positioning Systems (GPS), Geographic Information Systems
(GIS), remote sensing, and Internet of Things (IoT) devices for precise monitoring and management.
Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, play a significant role in capturing high-
resolution imagery for mapping orchard health, pest infestations, and water stress. AI-driven analytics and
Decision Support Systems (DRIS) provide actionable insights by analyzing data from diverse sources.
Remote sensing technologies, including satellite and drone imagery, facilitate the early detection of diseases
and nutrient deficiencies. IoT sensors monitor soil moisture, temperature, and other critical parameters,
ensuring optimal irrigation and reducing water wastage. This abstract outlines the potential of these advanced
technologies to transform traditional mango cultivation into a data-driven, efficient, and environmentally
responsible practice.
Key words: Precision agriculture, Remote sensing, Internet of things, Artificial Intelligence, Unmanned
aerial vehicle, VRT, Sensors.
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ABSTRACT

Introduction
The limited ability of traditional agricultural systems

to sustainably satisfy the needs of contemporary
agriculture has led to their criticism after being used for
millennia. In an era of climate uncertainty, conventional
systems frequently lack the efficiency and scalability
needed to feed a fast-expanding population, even though
they may have cultural importance and occasionally show
sustainability. Therefore, it has become more and more
clear that we need to move toward more sophisticated
and technologically driven techniques (Mgendi, 2024). In
advanced countries, precision farming is being performed.

However, it is still in its early stages in the India. The
world’s second-largest fruit grower is India. Therefore,
using a few components of precision farming in fruit crop
production is one of the greatest ways to improve land,
create jobs, improve farmers’ economic status and
increase nutritional security. Modern agricultural
techniques have undergone a radical paradigm change
with precision farming, sometimes referred to as precision
agriculture (PA). Precision farming, which often involves
careful planning from production to postharvest and
processing, uses information, technology and management
to improve horticulture’s productivity, sustainability and
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efficiency (Roberson, 1999).
Nowadays, mangos (Mangifera indica L.) are

grown in over a thousand nations. It is among the most
significant fruit crops grown in tropical and subtropical
areas. According to (Rajith Singh and Saxena, 2005),
mangoes are unmatched by other fruits in terms of area,
production, nutritional content, and attractiveness. About
half of the world’s mango output comes from India, which
has the greatest area (Sauco, 2013). Over 40% of all
fruit land in India is used for mango cultivation. It is crucial
to enhance output using the resources at availability due
to the massive population growth and rising demand.
According to (Kumar, 2017), inadequate orchard
management, dense canopies with broader spacing, poor
sunlight interception, and inadequate ventilation are the
primary causes of India’s low mango output. These
factors also encourage a higher occurrence of pests and
diseases. Since agriculture uses the most water globally,
precision agriculture relies heavily on effective water
application (Jiang et al., 2011). Saving water in agriculture
could be feasible without having a major effect on yield
(Greaves and Wang, 2017). Perea et al. (2017) state
that high-value fruits, where quality assurance is a key
factor in determining profitability, benefit greatly from
precision irrigation.
Components of Precision Farming

In precision farming, variability across time and
location is managed and understood. Based on survey
data, this system matches inputs to field conditions using
site-specific inputs, including computer systems, GPS
systems, GIS systems, RS systems, VRA systems, yield
mapping technologies, soil and crop sensing technologies,
DRIS and SSNM for precision horticulture and waste
management in relation to precision horticulture in a
particular site.
Computer system

Computers have aided in the definition of precision
farming as a management approach that makes decisions
using information technology (Best et al., 2005).
Acquiring, managing, analyzing, and producing a
significant amount of geographical and temporal data are
all necessary for precision farming. As computer software
for precision farming has improved throughout time, so
too has the expertise required to manage farm variability
and make informed judgments (Ampatzidis et al., 2009).
Geographic information system

The Geographic Information System (GIS), which is
made up of an organized set of computer hardware,
software, geographic data and human resources, is a

crucial tool for effectively gathering, storing, updating,
manipulating, analyzing, and displaying all forms of
geographically referenced information (Miller et al.,
1999). The leap from mapping to spatial thinking is made
possible by the modeling and data management
components of GIS research. Miller and Paice (Miller et
al., 1998) claim that because GIS includes base maps of
topography, soil type, nutrient level, soil moisture, pH,
fertility, and weed and insect severity, it may be utilized
to apply prescribed rates of fertilizers or pesticides.
Additionally, it may link with other decision support tools
and incorporate various kinds of data.
Global positioning system

The Global Positioning System (GPS) was developed
by the US Department of Defense (DOD). The
positioning system operates with the help of many satellite
constellations. Advances in positioning systems have
made precision agriculture a reality. The main technical
milestone is represented by these advancements. GPS
provides an accurate locating method for variable rate
technologies used in the field (Srivastava et al., 2009). It
enables agricultural equipment to be positioned within
inches of one another, regulates how inputs are
administered by machines, recommends fertilizer and
insecticides according to the properties of the soil. Every
GPS work must distribute and store position data from a
single system situated at a central vehicle, such a tractor
(Mondal, 2004). Spilker claims that the main advantage
of a central system is that position data is calculated
according to the application and delivered directly to the
site of use (Spilker, 1996).
Remote sensing

Crop electromagnetic emittance and reflectance data
obtained remotely by satellite or aircraft can provide
important information about a number of topics, including
plant growth, soil health, and weed infestation. This type
of information, which is also economically priced, may
be very helpful for site-specific crop management
programs (Schachtl et al., 2005). This technology can
help precision agriculture since it makes it relatively easy
to provide field parameters. In precision agriculture,
remote sensing tools like LiDAR sensors and multispectral
cameras support data-driven decision making.
Multispectral cameras are able to identify minute changes
in crop reflectance that might be signs of disease
outbreaks, stress, or nutrient shortages. Farmers benefit
greatly from this early detection capabilities as it enables
them to see problems early in the growing season and
take appropriate action, improving crop health and
production (Ma et al., 2021; Rosas et al., 2022).
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Furthermore, LiDAR sensors make it easier to create
accurate elevation models of fields, providing important
information about the properties of the terrain. Farmers
may use this data for a number of things, including
designing drainage systems, assessing the topography to
determine the best water flow, and comprehending
topographical changes that could affect crop health
(Rivera et al., 2023).
Drones (Unmanned aerial vehicles)

Drones, sometimes referred to as unmanned aerial
vehicles, have revolutionized precision agriculture data
collecting. UAVs can collect high-resolution data and
images across vast agricultural regions when outfitted
with advanced sensors and cameras. Drone-captured
aerial imagery offers a bird’s-eye perspective of fields,
which is crucial for monitoring crop health and producing
intricate field maps. This picture helps pinpoint problem
areas, such as insect infestations, water stress or pests
in mango orchards, allowing farmers to take preventative
action.
Sensors and Internet of things (IoT)

The Internet of Things (IoT) in agriculture is built on
sensors, which are essential parts of contemporary
precision agriculture (Mekonnen et al. ,  2020;
Karunathilake et al., 2023). These gadgets are placed
thoughtfully throughout fields to continually gather real-
time data on a range of environmental variables. The
network of these sensors that are connected to one
another and to central data processing systems is known
as the Internet of Things. This network gives farmers
instant access to vital data on crop health, temperature,
humidity, and soil moisture so they can make well-informed
decisions.
Artificial intelligence (AI) and machine learning

In order to handle and analyze large datasets, derive
significant patterns and insights, and provide predictions
or recommendations based on incoming data, artificial
intelligence (AI) and machine learning have become
extremely potent technologies (Lay, 2023). One of the
best examples of the amazing potential that machine
learning and artificial intelligence (AI) have for precision
agriculture is crop disease prediction (Shin et al., 2023;
Adli et al., 2023). Machine learning models are capable
of reliably forecasting disease outbreaks by utilizing
historical data on crop maladies and taking into account
a variety of environmental parameters, including weather,
soil moisture levels, and insect populations.

Another crucial use of machine learning and artificial
intelligence (AI) in precision agriculture is yield prediction

(Punithavathi, 2023). To predict crop yields with
remarkable precision, these sophisticated algorithms
make use of a multitude of variables, such as past yield
records, weather predictions, soil properties, and crop
growth stages (Neményi, 2022). AI-driven yield prediction
models make use of this extensive dataset to give farmers
insightful information that is crucial for resource allocation,
harvest planning and well-informed marketing choices.

In reality, AI and machine learning are essential to
precision agriculture, transforming farming methods and
opening the door to lucrative and sustainable operations.
Farmers may improve crop yields and profitability by
utilizing these tools to make timely choices and allocate
resources as efficiently as possible. In order to improve
Artificial Intelligence (AI)-assisted Landsat-8 image
analysis for mango orchard detection and mapping,
machine learning approaches are essential. Advanced
algorithms like Rf, KNN, NB, Svm and Cart are used in
these methods to precisely analyze the intricate spectral
fingerprints that are exclusive to mango orchards from
satellite data.

Support Vector Machines (SVM): The utilization
of Support Vector Machines (SVM) in the identification
of mango trees using satellite data has become a
noteworthy development in the field of agricultural
management (Vaghela, 2012). Among the several
properties found in satellite photography, the supervised
learning algorithm SVM is successful in identifying mango
plants. The SVM model learns to correctly categorize
pixels by being trained with labeled data that represents
the characteristics of mango trees as well as other
components like soil or vegetation.

Random Forest (RF): Using Random Forest models
to identify mango trees from satellite data has become a
useful tool in agricultural management (Chabalala et al.,
2022). An ensemble learning method called Random
Forest excels at deciphering complicated datasets like
satellite photos. Random Forest is able to distinguish
mango trees from other objects in the image by using
several decision trees that have been trained on different
criteria. Random Forest improves its accuracy and
resilience through the ensemble learning process, which
aggregates predictions from several models. The
fundamental ideas of Random Forest include building and
combining decision trees to provide predictions, even
though it lacks a single equation like some other algorithms.

Classification and Regression plants (CART):
Because of its interpretability and versatility, the CART
model is frequently used to identify mango plants using
satellite data. CART is very skilled at managing the



12 Shubham Jain et al.

intricacies involved in satellite imagery processing since
it operates by recursively segmenting the feature space.
In order to build a decision tree for mango tree detection,
CART uses a variety of spectral and spatial parameters
that are taken from satellite data. The nodes in this tree
stand for feature thresholds and the branches show the
binary choices made in response to these thresholds
(Anderson et al., 2019).

Naive Bayes (NB) : Because of its simplicity and
efficiency, the Naive Bayes model is a widely used
technique for identifying mango trees from satellite data
(Zhang et al., 2024). This model, which is based on the
Bayes theorem, determines the likelihood that an event
will occur while taking into account past knowledge of
potentially relevant situations. The Naive Bayes model
functions in the context of mango tree detection by
assuming that characteristics obtained from satellite data
are conditionally independent given the class label, i.e.,
whether mango trees are present or not.

Yield estimation using machine learning
techniques : Before the era of machine learning, fruit
identification was accomplished by just taking pictures
of orchards and utilizing several segmentation techniques,
including as K-means, watershed, contour detection, and
decision trees, to identify the fruit’s size, shape, color,
and texture. Since it eliminates the work required by
human intellect, machine learning (ML), a branch of
artificial intelligence, is widely employed by researchers.
It creates a trained model for (given) input characteristics
derived from source objects using a collection of
algorithms (Kamilaris et al., 2017; Liakos et al., 2018).
(Qureshi et al., 2017) used photos of mango tree canopies
to suggest a technique for the accurate identification of
fruits. They used two methods: The first method used a
collection of filters on the input image to distinguish
between pixels that were fruit and those that weren’t. In
contrast to a circular form, the second examined the
borders of mango fruits as an ellipse. When the results
were contrasted with those of other machine learning
methods, such as Support Vector Machines (SVM) and
K-nearest neighbors (kNN), the suggested approach
showed an F1 score of 0.68.
Advances in Unmanned Aerial Vehicle platforms
for mango orchards

Unmanned aerial vehicles (UAVs) or drones are
aircraft that fly in a predetermined direction at a certain
speed under remote control. UAV availability has grown
significantly in recent years, and there are now a wide
variety of models, ranging from fixed-wing to multi rotor.
Furthermore, the use of UAVs with vertical takeoff and

landing (VTOL) systems in orchard management has
gained attention due to recent advancements in the field
(Mesas-Carrascosa et al., 2018; Torres-Sanchez, Lopez-
Granados et al., 2018). VTOL UAVs are simple to
operate and are not limited by site conditions or inclement
weather. In certain case studies, customized UAVs have
also surfaced to fulfill specific needs in addition to the
UAVs already stated (Stefas et al., 2019). In orchard
management, these UAVs are thought of as distant
sensing and imaging tools. However, UAVs are also
active. For example, UAVs used for spraying provide a
fresh approach to the security of traditional manual
pesticide application (Gao et al., 2019).
Identifying fruit trees with diseases

Visual observations in the field combined with
laboratory analysis are the traditional methods for
identifying diseases of fruit trees. These approaches have
limitations in terms of time-cost efficiency and trustworthy
evaluation (Khan et al., 2018; Pan et al., 2014; Srivastava
and Sadistap, 2017).  Exploring the complicated sensitivity
of an indicator for a specific disease diagnosis problem
has shown potential with machine learning. According to
O’Neill et al. (2016), UAV-based fruit-crop disease
monitoring has been used for a few different disease
kinds, but it is still crucial to look into its suitability for
monitoring serious illnesses like Panama disease in
bananas. Furthermore, disease identification based on
aerial photos from UAVs is inexpensive in terms of both
time and equipment and may offer orchard scouting
across a wider region.
Pesticides treatment for mango orchards

The improper and unregulated use of pesticides
damages ecosystems and pollutes protected regions,
affecting biological processes. Furthermore, hand spraying
exposes employees to dangerous chemicals in a high-
risk environment. UAV-based solutions are suggested as
being safer, more accurate, and more cost-effective than
manual spraying or manned agricultural aircraft in the
precision agriculture literature on pesticide spraying
systems in orchards (Martinez-Guanter et al., 2019;
Zhang et al., 2017). However, without a sensible spraying
plan and accurate and thorough information support such
as the identification of tree crown sections that are
considered target spraying areas, aerial spraying may not
be effective in practice.
SSNM and DRIS for horticultural precision farming

The diagnosis and recommendation integrated system
(DRIS) are a comprehensive method to crop mineral
nutrition that influences the integrated set of standards
that reflect the calibration of plant tissues, soil composition,
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environmental factors, and farming techniques as
functions of crop output (Beaufils, 1973). The capacity
to diagnose crops at any stage of growth and to prioritize
the nutrients that are limiting output in order of significance
are the two main benefits of the DRIS technique. To
complete the diagnostic and prediction application of the
leaf analysis, an integrated diagnosis and suggestion
system has been created. By optimizing these variables,
conditions are created that increase the likelihood of
achieving greater production and quality. DRIS uses a
survey approach, in which a large number of locations
are chosen at random from all around the region. Samples
of soil and leaves are collected for examination at each
location, and information about the fertilizer and manures
that were applied is noted. The majority of soils come
from basaltic parent material, and they frequently lack
certain nutrients, such as N, P, Fe, Mn and Zn59.

For this reason, the traditional approach to nutrition
management, which mostly involves applying
macronutrients in orchards, has not been very effective
in increasing productivity (Srivastava and Singh, 2004).
A practical solution to overcome nutritional limitations
and to maximize the productive potential of particular
orchard locations is soil test-based site-specific nutrient
management (SSNM). Fields are separated into
management zones, sometimes known as grids, under
site-specific management, and each zone is measured
and controlled independently. Producers must have access
to the knowledge and technology needed to carry out a
thorough management plan in order to perform site-
specific management.
Expert system software for Mango nutritional
disorders

Verma et al. (2018) created expert system software
on nutritional disorders and deficiencies in mangos to
diagnose the five main nutrient diseases—potassium,
boron, copper, zinc and magnesium. Following diagnosis,
the program suggests appropriate management choices
for the detected condition or deficit. It facilitates wise
decision-making and effectively empowers orchardists
in the sharing of knowledge (Parthiban et al., 2020).
Advance techniques of Precision farming
Nutrient Management Strategies in mango orchard

Variable Rate Technology (VRT) : The application
of VRT in horticulture demonstrates how precision
farming may significantly increase the effectiveness of
farm management strategies and resource utilization
efficiency. Variable rate applicators employ GPS
technology to pinpoint their exact location inside the field.
It takes accuracy to apply the appropriate quantity of

inputs at the appropriate locations. Real-time data from
sensors that monitor variables including crop health,
fertilizer levels, and soil moisture is used by certain
advanced systems. An onboard computer reads these
maps and sensor data and then determines the required
application rates for every zone. The control system then
automatically modifies the spreader or sprayer settings
to apply the appropriate amount of fertilizer, lime,
pesticides, or other inputs in line with the prescription
map (Bongiovanni, 2004). Even while the total amount
of fertilizer and lime consumed may not decrease, more
efficient use of these inputs may yield higher returns on
investment from an economic perspective. With VRT,
application rates may be progressively changed, which is
crucial for finding a balance between achieving the
desired outcomes and avoiding unnecessary overlaps.
Continuous developments in machine learning, data
analytics, and sensor technologies might further enhance
VRT systems (Sishodia et al., 2020).
Water Management Strategies in Mango orchard

Wireless Sensor Networks (WSN) : Wireless
sensor networks, or WSNs, offer practical solutions for
enhancing field water management, particularly in the
area of real-time soil moisture level monitoring. By
positioning sensor nodes around a field, farmers may obtain
vital information on soil moisture remotely, enabling more
precise and efficient watering methods. Wireless sensor
networks (WSN) are playing an increasingly significant
role in precision agriculture, particularly in the area of
real-time data collection and processing for irrigation
system improvement. By combining these networks with
state-of-the-art irrigation systems, farmers may greatly
increase crop health and water efficiency. Wireless sensor
networks enhance irrigation systems. This sensor makes
it possible to monitor soil moisture in real time. Data from
sensor nodes is wirelessly sent to a central system for
analysis and remote access. 3G, 4G, or even ADSL
networks are commonly used for this.

Farmers may now monitor farming conditions without
physically being present because to this (Kumar et al.,
2022). Even the watering can be set to run automatically
as needed. The combination of automated irrigation
systems and real-time soil moisture data allows for precise
control over water delivery. Systems like the automated
center-pivot may target areas that need the most watering
while avoiding over irrigation by modifying the water
output of individual spray nozzles based on the moisture
data received.

Variable Rate Irrigation (VRI) System: The initial
phase in the VRI systems process is a thorough
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assessment of the soil, topography, and crop health
differences in the field. This data may be gathered using
a variety of methods, including remote sensing devices,
aerial photography and soil moisture sensors. Most VRI
devices are controlled and automated by sophisticated
software that decodes information from weather stations,
sensors, and plant-based indicators through the use of
algorithms. The quantity of water needed in different
crops’ zones is decided by this program in real time. By
allocating water based on the specific needs of each
agricultural region, VRI significantly reduces water
waste. Studies like those by Yule et al. (2008), Hedley
and Yule (2009) have demonstrated that water reductions
of 10% to 25% are achievable. Through the prevention
of both under and over irrigation, precise water
management fosters the best possible plant development
circumstances, which can raise crop quality and yield.
The potential for crop gains and the decrease in water
use more than balance the significant cost benefits of
VRI technology. A significant barrier for small-scale
farmers in particular may be the difficulty of installing
and maintaining VRI equipment. For the initial setup, a
substantial sum of money needs to be invested on
technology and training. Strong data analytics skills are
required to handle the enormous volumes of data
produced by VRI system.
Identification of horticultural crop diseases in
precision farming

Spectroscopy: Spectroscopy has emerged as a crucial
method for horticultural crop disease diagnosis because
it can investigate the interactions between electromagnetic
radiation and plant tissues. This method detects subtle
changes linked to illness by measuring the absorption,
reflection, or transmission of light over a variety of
wavelengths in plant samples (Sankaran et al., 2010).
By comparing the spectral fingerprints of healthy and
sick plants, spectroscopy may be used to detect disease
signs before they become noticeable to the naked eye
(Couture et al., 2018). To detect illnesses, horticulturists
employ a variety of spectroscopic methods, including
visible-near-infrared (VNIR), mid-infrared (MIR) and
hyperspectral imaging. For instance, VNIR spectroscopy
is helpful for assessing metabolic alterations connected
to the development of illness, whereas MIR spectroscopy
is commonly used to investigate structural and
compositional changes in plant tissues. Atherton et al.
(2015) used fluorescence imaging spectroscopy in
combination with computer vision and machine learning
techniques to categorize healthy and sick leaves in
horticulture crops. They segmented fluorescence pictures
using normalized graph techniques, and then they extracted

texture features from the segmented images using co-
occurrence matrices. These collected characteristics
served as the inputs for a support vector machine
classifier. In Florida, Pydipati et al. (2006) employed
machine vision control technology and artificial
intelligence to identify citrus illnesses early. This method
made it simpler to identify diseases and provide fungicides
exactly where they were required.
Application of pesticides in precision farming

Technology based on Canopy Sensors: The
development of ultrasonic canopy sensor-based pesticide
applicators has greatly increased precision agriculture,
particularly for orchard crops such as mango, apple, etc.
where careless pesticide application might have negative
environmental effects (Skolik et al., 2018). At IIT
Kharagpur, an ultrasonic canopy sensor-based pesticide
applicator was developed. Only after detecting the
presence automated device saves a substantial quantity
of insecticide/pesticide (about 45–50%) by ensuring that
spraying occurs only where it is needed (Tiwari, 2019).
Similarly, a sprayer that uses ultrasonic of the target plant’s
canopy does it begin to spray insecticide. When mounted
on a tractor, this sensor, such as the Pro wave 400EP14D,
was developed elsewhere. When paired with the
appropriate electronics and a personal computer, these
sensors enable the real-time identification of canopy
structures. An RGB camera is used by Hocevar et al.
(2014) to identify canopies in their machine vision-based
automated orchard sprayer prototype. The system
evaluates the captured images in real time to modify the
pesticide spray flow to fit the curve of the apple tree
canopy. This technique allows for the adjustment of the
spray through controlled electric valves, as well as the
variation of chemical volume and liquid flow rate.
Additionally, a Crop Identification System (CIS) based
on ultrasonic sensors was developed in order to identify
the characteristics of the target canopy and enable optimal
spray deposition on the leaves by modifying the application
rate in accordance with the size and density of the canopy
(Llorens et al., 2011).
Automated Yield Monitoring System

Automated yield monitoring, which provides farmers
with real-time data on yield variability on their farms, is a
crucial component of precision agriculture. By measuring
this variability, farmers may make informed decisions to
reduce costs, increase output and improve system
efficiency (Khan, 2019). Such a system typically includes
of color cameras, a laptop computer mounted atop a
Specialized Farm Motorized Vehicle (SFMV), proprietary
software, and a real-time kinematics-global positioning
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system (RTK-GPS) for mapping fruit production in real
time. Farmers can map and accurately monitor the
production of their harvested fruits and vegetables with
this setup (Farooque, 2013).
Automated Harvesting System

Handpicking and other labor-intensive methods are
commonly used while harvesting fruits and other
horticultural crops. These methods are cost-effective and
large-scale scalability are constrained, though. Numerous
mechanical harvesting methods have been studied since
the 1960s in an effort to address this issue. To help in
fruit detachment, these methods include limb shaking, air
blasting, canopy shaking, trunk shaking, and the use of
chemical agents. These methods may increase output,
but they usually struggle to maintain fruit uniformity in
terms of size and quality. Color cameras in the vision
control system provide the control with data on the
location and separation of fruits. By using vision
technology, these machines can choose sizes and
preserve fruit quality, increasing total harvesting efficiency.
Despite their potential advantages, automated harvesting
systems are currently in the research and development
stage and have not yet reached commercialization due to
problems including low efficiency, limited intelligence, and
high initial investment costs (Kleine, 2015). In order to
develop more efficient harvesting robots that meet the
needs of horticultural crops, researchers are attempting
to get over these challenges. With further advancement,
automated harvesting technologies have the potential to
revolutionize harvesting practices in the agricultural sector
by reducing labor costs and increasing productivity
(Pereira et al., 2017).

Summary
Precision agriculture integrates advanced

technologies to optimize mango orchard management,
enhancing productivity, resource efficiency and
sustainability. Key components include GPS (Global
Positioning System) and GIS (Geographic Information
Systems) for precise mapping and monitoring of orchards.
These systems allow targeted interventions by identifying
spatial variability in soil, crop health and environmental
conditions. Remote sensing and drones (Unmanned Aerial
Vehicles - UAVs) are critical for capturing real-time data
on canopy health, pest infestations and stress levels. High-
resolution imagery from these tools provides insights into
growth patterns and areas requiring attention. Similarly,
IoT (Internet of Things) devices, such as soil moisture
sensors and weather stations, collect continuous data,
enabling real-time decision-making. Technologies like
DRIS (Diagnosis and Recommendation Integrated

System) assess nutrient imbalances, ensuring precise
fertilizer application. Artificial Intelligence (AI) and
machine learning enhance data analysis, predicting pest
outbreaks and optimizing irrigation and pesticide
application schedules. Automated machinery further
supports uniform operations, reducing labor and resource
usage. Advanced techniques in precision farming, such
as variable rate application (VRA) of fertilizers and
pesticides, ensure tailored inputs, minimizing waste and
environmental impact. UAVs facilitate precise pesticide
spraying and monitoring hard-to-reach areas, while AI-
driven analytics forecast yield trends, guiding harvesting
strategies. Overall, the integration of these technologies
in mango orchards improves yield quality, reduces costs,
and promotes sustainable agricultural practices.

Conclusion
In India, precision farming has the potential to usher

in the next green revolution by generating both rural riches
and food security. Despite being in its infancy in India,
there are several chances for adoption. The majority of
Indian farms are rainfed and depend on engineers,
scientists and agriculturists in addition to government
intervention to advance the usage of precision farming
due to scarcer inputs including labor, water, fertilizer and
weather patterns. Indian horticulture would benefit from
precision agriculture if it were to increase yields and
economic returns per field while minimizing environmental
harm. Precision agriculture has a lot of promise for the
future. Future developments will spur additional
innovation and make agricultural systems even more
effective and productive, especially in the areas of artificial
intelligence, blockchain for data security, and precision
robots. Adopting this cutting-edge technology, improving
training and education initiatives, fortifying legal
frameworks, and encouraging environmental stewardship
will all be crucial factors in the field’s advancement. We
can create a more resilient, sustainable, and lucrative
agricultural industry that satisfies the demands of a
growing world population while protecting our planet’s
resources for coming generations by utilizing precision
agriculture.
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